3.105 \(\int \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} \, dx\)

Optimal. Leaf size=106 \[ \frac {7 a^{3/2} \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{4 d}+\frac {7 a^2 \sin (c+d x)}{4 d \sqrt {a \sec (c+d x)+a}}+\frac {a^2 \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}} \]

[Out]

7/4*a^(3/2)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+7/4*a^2*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/
2*a^2*cos(d*x+c)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 106, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3813, 21, 3805, 3774, 203} \[ \frac {7 a^2 \sin (c+d x)}{4 d \sqrt {a \sec (c+d x)+a}}+\frac {7 a^{3/2} \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{4 d}+\frac {a^2 \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2*(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(7*a^(3/2)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(4*d) + (7*a^2*Sin[c + d*x])/(4*d*Sqrt[a +
 a*Sec[c + d*x]]) + (a^2*Cos[c + d*x]*Sin[c + d*x])/(2*d*Sqrt[a + a*Sec[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3805

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(a*Cot[
e + f*x]*(d*Csc[e + f*x])^n)/(f*n*Sqrt[a + b*Csc[e + f*x]]), x] + Dist[(a*(2*n + 1))/(2*b*d*n), Int[Sqrt[a + b
*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, -2
^(-1)] && IntegerQ[2*n]

Rule 3813

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(b^2*C
ot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[a/(d*n), Int[(a + b*Csc[e + f*x]
)^(m - 2)*(d*Csc[e + f*x])^(n + 1)*(b*(m - 2*n - 2) - a*(m + 2*n - 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d,
 e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1] && (LtQ[n, -1] || (EqQ[m, 3/2] && EqQ[n, -2^(-1)])) && IntegerQ[2
*m]

Rubi steps

\begin {align*} \int \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} \, dx &=\frac {a^2 \cos (c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}}+\frac {1}{2} a \int \frac {\cos (c+d x) \left (\frac {7 a}{2}+\frac {7}{2} a \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx\\ &=\frac {a^2 \cos (c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}}+\frac {1}{4} (7 a) \int \cos (c+d x) \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {7 a^2 \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {a^2 \cos (c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}}+\frac {1}{8} (7 a) \int \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {7 a^2 \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {a^2 \cos (c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}}-\frac {\left (7 a^2\right ) \operatorname {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}\\ &=\frac {7 a^{3/2} \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}+\frac {7 a^2 \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {a^2 \cos (c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.38, size = 108, normalized size = 1.02 \[ \frac {a \cos (c+d x) \sqrt {a (\sec (c+d x)+1)} \left ((7 \sin (c+d x)+\sin (2 (c+d x))) \sqrt {1-\sec (c+d x)}+7 \tan (c+d x) \tanh ^{-1}\left (\sqrt {1-\sec (c+d x)}\right )\right )}{4 d (\cos (c+d x)+1) \sqrt {1-\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2*(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(a*Cos[c + d*x]*Sqrt[a*(1 + Sec[c + d*x])]*(Sqrt[1 - Sec[c + d*x]]*(7*Sin[c + d*x] + Sin[2*(c + d*x)]) + 7*Arc
Tanh[Sqrt[1 - Sec[c + d*x]]]*Tan[c + d*x]))/(4*d*(1 + Cos[c + d*x])*Sqrt[1 - Sec[c + d*x]])

________________________________________________________________________________________

fricas [A]  time = 0.64, size = 278, normalized size = 2.62 \[ \left [\frac {7 \, {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (2 \, a \cos \left (d x + c\right )^{2} + 7 \, a \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{8 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac {7 \, {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (2 \, a \cos \left (d x + c\right )^{2} + 7 \, a \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/8*(7*(a*cos(d*x + c) + a)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x +
 c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(2*a*cos(d*x + c)^2 + 7*a*cos(d*x
 + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d), -1/4*(7*(a*cos(d*x + c) + a
)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - (2*a*cos(d*x +
 c)^2 + 7*a*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(cos(d*x+c))]Warning, assuming -2*a+a is positive. Hint: run assume to make assumptions on a variableWarning,
 assuming -2*a+a is positive. Hint: run assume to make assumptions on a variableWarning, assuming -2*a+a is po
sitive. Hint: run assume to make assumptions on a variableWarning, assuming -2*a+a is positive. Hint: run assu
me to make assumptions on a variableWarning, assuming -2*a+a is positive. Hint: run assume to make assumptions
 on a variableWarning, assuming -2*a+a is positive. Hint: run assume to make assumptions on a variableWarning,
 assuming -2*a+a is positive. Hint: run assume to make assumptions on a variableWarning, assuming -2*a+a is po
sitive. Hint: run assume to make assumptions on a variableEvaluation time: 0.94Unable to divide, perhaps due t
o rounding error%%%{%%{[%%%{%%{[469762048,0]:[1,0,-2]%%},[14]%%%},0]:[1,0,%%%{1,[1]%%%}]%%},[0,1]%%%} / %%%{%%
%{%%{[67108864,0]:[1,0,-2]%%},[12]%%%},[0,0]%%%} Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 1.04, size = 222, normalized size = 2.09 \[ -\frac {\left (-7 \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \cos \left (d x +c \right ) \sqrt {2}\, \sin \left (d x +c \right )-7 \sqrt {2}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \sin \left (d x +c \right )+8 \left (\cos ^{4}\left (d x +c \right )\right )+20 \left (\cos ^{3}\left (d x +c \right )\right )-28 \left (\cos ^{2}\left (d x +c \right )\right )\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, a}{16 d \cos \left (d x +c \right ) \sin \left (d x +c \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(a+a*sec(d*x+c))^(3/2),x)

[Out]

-1/16/d*(-7*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/c
os(d*x+c)*2^(1/2))*cos(d*x+c)*2^(1/2)*sin(d*x+c)-7*2^(1/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*si
n(d*x+c)/cos(d*x+c)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*sin(d*x+c)+8*cos(d*x+c)^4+20*cos(d*x+c)^3-28
*cos(d*x+c)^2)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)/cos(d*x+c)/sin(d*x+c)*a

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\cos \left (c+d\,x\right )}^2\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^2*(a + a/cos(c + d*x))^(3/2),x)

[Out]

int(cos(c + d*x)^2*(a + a/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(a+a*sec(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________